Using plants to treat human diseases is very old and has evolved throughout human history. Flueggea virosa and Newbouldia laevis are two plant species acclimatized in Benin and used in Africa to treat several diseases such as malaria, liver diseases; fever, migraine, diarrhea, dysentery, intestinal worms, diabetes, sexually transmitted diseases, etc. In this work, we studied methanolic and hydroethanolic leaf extracts from those species. Phytochemical screening was determined by the Hounton and Raman methods, and the antimicrobial activity of the leaf extracts was evaluated by the microdilution method. The antimicrobial properties of the leaf extracts were examined on five bacteria strains. The phytochemical analysis revealed the presence of alkaloids, polyphenols, tannins, flavonoids, anthocyanins, coumarins, mucilages, reducing compounds, and bound anthracene derivatives (O-heterosides and C-heterosides). Quinonine derivatives were absent in the leaves of Flueggea virosa, but present in the leaves of Newbouldia laevis. In addition, the leaves of Flueggea virosa contained saponosides, triterpenoids compared to those of Newbouldia laevis. Moreover, Flueggea virosa leaves enclosed no cardenolides, cyanogenic derivatives as well as, free leuco-anthocyanins and anthracene derivatives. Evaluation of antimicrobial activity in the five strains included in this study showed better results (minimum inhibitory concentrations between 31.2 and 1000 μg/mL), specifically with the methanolic extract from Flueggea virosa leaves that showed a Minimum Inhibitory Concentration (MIC) equal to 31.2 μg/mL against the reference strain of Staphylococcus aureus ATCC 12600. Among the two plants, Flueggea virosa extracts showed more interesting antimicrobial activity then those of Newbouldia laevis on strains.
Published in | Science Journal of Chemistry (Volume 13, Issue 2) |
DOI | 10.11648/j.sjc.20251302.11 |
Page(s) | 33-40 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Flueggea virosa, Newbouldia laevis, Phytochemical Screening, Antimicrobial Activity
Plants | Extracts | Yields (%) | Color | Physical aspect |
---|---|---|---|---|
Flueggea virosa | Methanolic | 8.84 | Brown | Paste |
Ethanol/Water (70/30) | 10.85 | Green | Powder | |
Newbouldia laevis | Methanolic | 5.2 | Black | Powder |
Ethanol/Water (70/30) | 8.5 | Green | Powder |
Active Ingredient Class | Flueggea virosa leaves | Newbouldia laevis leaves |
---|---|---|
Alkaloids | + | + |
Polyphenols | + | + |
Tannins | + | + |
catechin tannins | + | + |
gallic tannins | + | + |
flavonoids (flavones) | + | + |
anthocyanins | + | + |
leuco anthocyanins | - | - |
quinonic derivatives | - | + |
saponins | + | - |
triterpenes | + | - |
cardenolides | - | - |
cyanogenic derivatives | - | - |
mucilages | + | + |
coumarins | + | + |
reducing compounds | + | + |
free anthracene derivatives | - | - |
anthracenic O-heterosides | + | + |
anthracenic C-heterosides | + | + |
Name of the plant | Sample code | E. coli ATCC 25922 | K. pneumoniae NR 4188 | S. typhimirim STM CPC | S. aureus ATCC 12600 | E. faecalis ATCC 51299 |
---|---|---|---|---|---|---|
Positive control | Ciprofloxacin | 0.34 | 0.66 | 0.33 | 0.32 | 0.62 |
F. virosa | FVH | 500 | 500 | 1000 | 250 | NA |
FVM | 250 | 1000 | 500 | 31.2 | 500 | |
N. laevis | NLH | 1000 | NA | NA | 1000 | NA |
NLM | 500 | NA | NA | 250 | NA |
NA | Not Active |
FVM | Methanolic Extract of Flueggea virosa |
FVH | Hydroethanolic Extract of Flueggea virosa |
NLM | Methanolic Extract of Newbouldia laevis |
NLH | Hydroethanolic Extract of Newbouldia laevis |
[1] | Kpabi, I., Agban, A., Hoekou, Y., Pissang, P., Tchacondo, T., Batawila, K. Etude Ethnobotanique des Plantes à Activités Antiparasitaires Utilisées en Médecine Traditionnelle dans la Préfecture de Doufelgou au Nord du Togo. Journal of Applied Biosciences, 2020, 148, 15176-15189. |
[2] | Kpodar, M. S., Karou, S. D., Katawa, G., Anani, K., Gbekley, H. E.; Adjrah, Y.; Tchacondo, T.; Batawila, K.; Simpore, J. An Ethnobotanical Study of Plants Used to Treat Liver Diseases in the Maritime Region of Togo. Journal of Ethnopharmacology, 2016, 181, 263–273. |
[3] | Burkill, H. M. Entry for Lasiurus hirsutus (Forssk.) Boiss. [family POACEAE]. In: The useful plants of west Tropical Africa, 2nd edition. Royal Botanic Gardens, Kew, UK. 1985. |
[4] | Amri, E., Kisangau, D. P. Ethnomedicinal Study of Plants Used in Villages around Kimboza Forest Reserve in Morogoro, Tanzania. Journal of Ethnobiology and Ethnomedicine, 2012, 8(1), 1. |
[5] | Kamatenesi, M. M., Acipa, A., Oryem-Origa, H. Medicinal Plants of Otwal and Ngai Sub Counties in Oyam District, Northern Uganda. Journal of Ethnobiology and Ethnomedicine, 2011, 7(1), 7. |
[6] | Tugume, P., Kakuidi, E. K., Buyinza, M., Namaalwa, J., Kamatenesi, M., Mucunguzi, P., Kalema, J. Ethnobotanical Survey of Medicinal Plant Species Used by Communities around Mabira Central Forest Reserve, Uganda. Journal of Ethnobiology and Ethnomedicine, 2016, 12 (1), 5. |
[7] | Fah, L., Klotoé J. R., Dougnon V., Koudokpon H., Fanou, V. B. A., Dandjesso, C., Loko, F. Étude Ethnobotanique des Plantes Utilisées dans le Traitement du Diabète Chez Les Femmes Enceintes à Cotonou et Abomey-Calavi (Bénin). Journal of Animal &Plant Sciences, 2013, 18, 2647–2658. |
[8] | Komlaga, G., Agyare, C., Dickson, R. A., Mensah, M. L. K., Annan, K., Loiseau, P. M., Champy, P. Medicinal Plants and Finished Marketed Herbal Products Used in the Treatment of Malaria in the Ashanti Region, Ghana. Journal of Ethnopharmacology, 2015, 172, 333–346. |
[9] | Ouro-Djeri, H., Koudouvo, K., Esseh, K., Tchacondo, T., Batawila, K., Wateba, M. I., Ouro-Djeri, E., Gbeassor, M. Etude ethnopharmacologique des plantes utilisées dans la préparation des phytomédicaments extemporanés à Tomety-Kondji, canton riverain au Parc National de Togodo-Sud du Togo. International Journal of Chemical and Biological Sciences, 2022, 16(3), 967–991. |
[10] | Bothon, F. T. D., Moustapha, M., Bogninou, S. G., Dossa, C. P. A., Yehouenou, B., Medoatinsa, S. E., Noudogbessi, J. P., Avlessi, F., Sohounhloué, D. C. K. Chemical Characterization and Biological Activities of Newbouldia laevis and Pterocarpus santalinoides Leaves. Bulletin of Environment, Pharmacology and Life Sciences, 2014, 3(11), 9-15. |
[11] | Sidi, I. Y. M. S., Alowanou, G. G., Tchétan, E., Aminou, M. Y., Hounzangbé-Adoté, S. M., Babatoundé, S. Effets de la Digestion Gastrique sur les Propriétés Anthelminthiques de Zanthoxylum zanthoxyloides (Lam.) Zepernick & Timlerto et de Newbouldia laevis (P. Beauv.) Sur Haemonchus contortus. European Scientific Journal, 2017, 13(24), 204. |
[12] | Singh, O. P., Hasker, E., Sacks, D., Boelaert, M., Sundar, S. Asymptomatic Leishmania Infection: A New Challenge for Leishmania Control. Clinical Infectious Diseases, 2014, 58 (10), 1424–1429. |
[13] | Bailly, C. Traditional Uses, Pharmacology and Phytochemistry of the Medicinal Plant Flueggea virosa (Roxb. ex Willd.) Royle. Future Pharmacology, 2024, 4(1), 77-102. |
[14] | Peng, Y., Zeng, N., Yao, Q., Peng C., Sheng, W., Li, B., Wang, W. A Review of the Medicinal Uses, Phytochemistry and Pharmacology of Genus Flueggea. Current Chinese Science, 2023, 3(3), 213-241. |
[15] | Tabuti, J. R. S. Flueggea virosa (Roxb. ex Willd.) Voigt. In Plant Resources of Tropical Africa 11(1): Medicinal Plants 1; Schmelzer, G. H., Gurib-Fakim, A., Eds., Prota Foundation: Wageningen, The Netherlands, 2008, 305-308. |
[16] | Brüssow H. The antibiotic resistance crisis and the development of new antibiotics. Microbial biotechnology, 2024, 17(7): e14510. |
[17] | Houghton, P. J. and Raman, A. Laboratory Handbook for Fractionation of Natural Extracts. Chapman and Hall, London, New York, 1998, 199 p., 208p. |
[18] | Kpadonou-Kpoviessi, B., Noudamadjo, A., Goueti, B., Atchade, B., Toukam, P. D., Gbenou, J., Glinma, B., Kpoviessi, S. Phytochemical Screening, Investigation of the Antisalmonella, Antishigella, and Antioxidant Properties of the Leaves of Rauvolfia vomitoria Afzel. Journal of Pure and Applied Chemistry Research, 2024, 13(1), 63–71. |
[19] | Wayne, P. A. Clinical and Laboratory Standards Institute (2015). Performance Standards for Antimicrobial Susceptibility Testing, 25th Informational Supplement. CLSI Document M100-S25. |
[20] | Kuete, V., Efferth, T. Cameeroonian Medicinal Plants: Pharmacology and Derived Natural Products. Frontiers in Pharmacology, 2010, 123. |
[21] | Oghenemaro, E. F., Oise, I. E., Cynthia, D. The Effects of Securinega virosa Leaves on Methicillin-Resistant Staphylococcus Aureus (MRSA). International Journal of Pharmaceutical Research and Allied Sciences, 2021, 10(2), 29–34. |
[22] | Thiombiano, H. M., Bangou, M. J., Nacoulma, A. P., Ouoba, B., Lema, A., Coulidiati, T. H., Ouoba, H. Y., Ouedraogo, G. A. Ethnobotanical Survey on Medicinal Plants Used in Burkina Faso in the Treatment of Breast Cancer, Phytochemistry and Antioxidant Activities: Euphorbia poissonii Pax and Flueggea virosa (Willd.) Voigt. (Euphorbiaceae). African Journal of Biology and Medical Research, 2022, 5(1), 1–16. |
[23] | Udeozo, I. P, Nwaka. Andrew C., Ugwu Okechukwu P. C., Akogwu M. Anti-Inflammatory, Phytochemical and Acute Toxicity Study of the Flower Extract of Newbouldia laevis. International Journal of Current Microbiology and Applied Sciences, 2014, 3(3), 1029–1035 |
[24] | Usman, H., Osuji, J. Phytochemical And In Vitro Antimicrobial Assay Of The Leaf Extract Of Newbouldia laevis. African Journal of Traditional, Complementary and Alternative Medicines, 2008, 4(4), 476. |
[25] | Tinnèlo, S., Tidiane, K., Abdoulaye, T., Souleymane, M., Claude, K. A. L., Adama, C. Phytochemical Screening and Effects on Spermatogenesis of Extracts from Leaves of Flueggea virosa (Roxb, Ex Willd.) Royle and Heliotropium indicum L., Two Plants Used against Infertility in North of Ivory Cost. Journal of Phytopharmacology, 2024, 13(1), 37–42. |
[26] | Traoré, K., Haidara, M., Denou, A., Kanadjigui, F., Sogoba, M. N., Diarra, B., Maiga, S., Sanogo, R. Criblage Phytochimique et Activités Biologiques de Quatre Plantes Utilisées au Mali dans la Prise en Charge du Paludisme Chez Les Enfants. European Scientific Journal, 2019, 15(6). |
[27] | Ali, B. H. and Al-Wabel, N. A. Flueggea virosa: A Review of Its Phytochemistry and Pharmacological Potential. Pharmacognosy Reviews, 2015, 9(17), 46–53. |
[28] | Dickson, R. A., Houghton, P. J., Hylands, P. J., Gibbons, S. Antimicrobial, Resistance-Modifying Effects, Antioxidant and Free Radical Scavenging Activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. And Microglossa pyrifolia Lam. Phytotherapy Research, 2006, 20 (1), 41-45. |
[29] | Osuagwu, G. G. E., Akomas, C. Antimicrobial activity of the leaves of three species of Nigerian Pterocarpus (Jacq.). International Journal of Medicinal and Aromatic Plants, 2013, 3, 178-183. |
[30] | Okagu, I. U., Ndefo, J. N., Agbo, M. O. Trado-Medical uses, Chemical Constituents and Biological Activities of Newbouldia laevis (Bignoniaceae): A Review. Pharmaceutical Sciences, 2021, |
APA Style
Amandine, N., Bénédicta, K., Bienvenu, G., Basile, G., Blandine, K., et al. (2025). Phytochemical Screening and Antimicrobial Properties of Leaf Extracts from Newbouldia laevis (P. Beauv) and Flueggea virosa (Roxb. ex Willd.). Science Journal of Chemistry, 13(2), 33-40. https://doi.org/10.11648/j.sjc.20251302.11
ACS Style
Amandine, N.; Bénédicta, K.; Bienvenu, G.; Basile, G.; Blandine, K., et al. Phytochemical Screening and Antimicrobial Properties of Leaf Extracts from Newbouldia laevis (P. Beauv) and Flueggea virosa (Roxb. ex Willd.). Sci. J. Chem. 2025, 13(2), 33-40. doi: 10.11648/j.sjc.20251302.11
@article{10.11648/j.sjc.20251302.11, author = {Noudamadjo Amandine and Kpadonou-Kpoviessi Bénédicta and Glinma Bienvenu and Goueti Basile and Kampa-Kuemkon Blandine and Gbaguidi Ahokanou Fernand and Kpoviessi Dossou Sika Salomé}, title = {Phytochemical Screening and Antimicrobial Properties of Leaf Extracts from Newbouldia laevis (P. Beauv) and Flueggea virosa (Roxb. ex Willd.) }, journal = {Science Journal of Chemistry}, volume = {13}, number = {2}, pages = {33-40}, doi = {10.11648/j.sjc.20251302.11}, url = {https://doi.org/10.11648/j.sjc.20251302.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20251302.11}, abstract = {Using plants to treat human diseases is very old and has evolved throughout human history. Flueggea virosa and Newbouldia laevis are two plant species acclimatized in Benin and used in Africa to treat several diseases such as malaria, liver diseases; fever, migraine, diarrhea, dysentery, intestinal worms, diabetes, sexually transmitted diseases, etc. In this work, we studied methanolic and hydroethanolic leaf extracts from those species. Phytochemical screening was determined by the Hounton and Raman methods, and the antimicrobial activity of the leaf extracts was evaluated by the microdilution method. The antimicrobial properties of the leaf extracts were examined on five bacteria strains. The phytochemical analysis revealed the presence of alkaloids, polyphenols, tannins, flavonoids, anthocyanins, coumarins, mucilages, reducing compounds, and bound anthracene derivatives (O-heterosides and C-heterosides). Quinonine derivatives were absent in the leaves of Flueggea virosa, but present in the leaves of Newbouldia laevis. In addition, the leaves of Flueggea virosa contained saponosides, triterpenoids compared to those of Newbouldia laevis. Moreover, Flueggea virosa leaves enclosed no cardenolides, cyanogenic derivatives as well as, free leuco-anthocyanins and anthracene derivatives. Evaluation of antimicrobial activity in the five strains included in this study showed better results (minimum inhibitory concentrations between 31.2 and 1000 μg/mL), specifically with the methanolic extract from Flueggea virosa leaves that showed a Minimum Inhibitory Concentration (MIC) equal to 31.2 μg/mL against the reference strain of Staphylococcus aureus ATCC 12600. Among the two plants, Flueggea virosa extracts showed more interesting antimicrobial activity then those of Newbouldia laevis on strains. }, year = {2025} }
TY - JOUR T1 - Phytochemical Screening and Antimicrobial Properties of Leaf Extracts from Newbouldia laevis (P. Beauv) and Flueggea virosa (Roxb. ex Willd.) AU - Noudamadjo Amandine AU - Kpadonou-Kpoviessi Bénédicta AU - Glinma Bienvenu AU - Goueti Basile AU - Kampa-Kuemkon Blandine AU - Gbaguidi Ahokanou Fernand AU - Kpoviessi Dossou Sika Salomé Y1 - 2025/04/02 PY - 2025 N1 - https://doi.org/10.11648/j.sjc.20251302.11 DO - 10.11648/j.sjc.20251302.11 T2 - Science Journal of Chemistry JF - Science Journal of Chemistry JO - Science Journal of Chemistry SP - 33 EP - 40 PB - Science Publishing Group SN - 2330-099X UR - https://doi.org/10.11648/j.sjc.20251302.11 AB - Using plants to treat human diseases is very old and has evolved throughout human history. Flueggea virosa and Newbouldia laevis are two plant species acclimatized in Benin and used in Africa to treat several diseases such as malaria, liver diseases; fever, migraine, diarrhea, dysentery, intestinal worms, diabetes, sexually transmitted diseases, etc. In this work, we studied methanolic and hydroethanolic leaf extracts from those species. Phytochemical screening was determined by the Hounton and Raman methods, and the antimicrobial activity of the leaf extracts was evaluated by the microdilution method. The antimicrobial properties of the leaf extracts were examined on five bacteria strains. The phytochemical analysis revealed the presence of alkaloids, polyphenols, tannins, flavonoids, anthocyanins, coumarins, mucilages, reducing compounds, and bound anthracene derivatives (O-heterosides and C-heterosides). Quinonine derivatives were absent in the leaves of Flueggea virosa, but present in the leaves of Newbouldia laevis. In addition, the leaves of Flueggea virosa contained saponosides, triterpenoids compared to those of Newbouldia laevis. Moreover, Flueggea virosa leaves enclosed no cardenolides, cyanogenic derivatives as well as, free leuco-anthocyanins and anthracene derivatives. Evaluation of antimicrobial activity in the five strains included in this study showed better results (minimum inhibitory concentrations between 31.2 and 1000 μg/mL), specifically with the methanolic extract from Flueggea virosa leaves that showed a Minimum Inhibitory Concentration (MIC) equal to 31.2 μg/mL against the reference strain of Staphylococcus aureus ATCC 12600. Among the two plants, Flueggea virosa extracts showed more interesting antimicrobial activity then those of Newbouldia laevis on strains. VL - 13 IS - 2 ER -